

Satisfying Heterogeneous User Needs via Innovation Toolkits:

The Case of Apache Security Software

Nikolaus Franke* and Eric von Hippel**

January, 2002

MIT Sloan School of Management Working Paper # 4341-02

Final version published in ” Research Policy (2003) Vol 32, No. 7 pp.1199-1215.

* Professor, Vienna University of Economics and Business Administration, Austria

 nikolaus.franke@wu-wien.ac.at

**Professor, MIT Sloan School of Management, Cambridge, MA, USA

 evhippel@mit.edu

1

Satisfying Heterogeneous User Needs via Innovation Toolkits:

The Case of Apache Security Software

Nikolaus Franke and Eric von Hippel

January, 2002

ABSTRACT

Manufacturers customarily provide only a few product variants to address the average needs

of users in the major segments of markets they serve. When user needs are highly

heterogeneous, this approach leaves many seriously dissatisfied. One solution is to enable

users to modify products on their own using “innovation toolkits.” We explore the

effectiveness of this solution in an empirical study of Apache security software. We find

high heterogeneity of need in that field, and also find that users modifying their own

software to be significantly more satisfied than non-innovating users. We propose that the

“user toolkits” solution will be useful in many markets characterized by heterogeneous

demand.

Key words: toolkits, user innovation, need heterogeneity, open source software

2

Satisfying Heterogeneous User Needs via Innovation Toolkits:

The Case of Apache Security Software

1. Introduction

Customers for a given type of product or service can have needs that are quite

heterogeneous. Market researchers are of course aware of this and, when heterogeneity of need is

high, they may decide to divide a target market into several segments, each containing customers

with somewhat different needs. Then, they often create somewhat different products for each

segment, each intended to address the average customer need in that segment.

This approach to the problem of heterogeneity of need is helpful, but it typically falls well

short of offering each customer a product that is a precise fit to that firm or individual’s needs. This

is clearly illustrated by the outcomes of market segmentation studies using cluster analysis. After

segmentation, fully 50% of the total variation in customer or user need is typically left as

(unaddressed) within-segment variation (table 1). The importance to a customer of the difference

between a product designed for an average user and what a given firm or individual really wants will

of course vary. An “almost-right” basketball shoe may be reasonably acceptable to a weekend athlete

but at the same time totally unacceptable to a professional player.

The partial response to the true heterogeneity of customer need just described has historically

made good economic sense. From the manufacturer’s point of view, when it is costly to design,

produce and advertise products, it may only be profitable to identify and serve a few market

segments with products responsive to average within-segment needs. However, recent technological

advances have reduced the cost of designing and producing products for “markets of one.” As a

result it is now feasible to better satisfy customers with needs that deviate from the market segment

average.

In this study we propose that it will be more cost-effective to better serve heterogeneous

customer need by transferring the development of custom products to customers than it will be to

follow a more conventional approach and attempt to (greatly) increase the number of market

segments addressed by manufacturer-based innovators. We explore the possible effectiveness of this

strategy empirically via a study of user satisfactions with the security functions of Apache web server

software. Apache is a very successful “open source” server software product that is today used to

3

run 60% of all Internet websites. Open source software is designed to be freely modifiable by its

users.

In brief, the major findings of our empirical study begin with the determination that user

needs for Apache security functionality are in fact highly heterogeneous. Next, we find that many

Apache users are not fully satisfied by existing standard Apache security offerings. When we apply a

very conservative measure of willingness to pay (an 80% deflation of expressed willingness to pay),

we find that the average Apache user is willing to pay a considerable amount (over $5,000 per user

and over $160 mm in aggregate) to have their individual needs for the security functions of Apache

met to their total satisfaction.

An approach to better satisfying heterogeneous user need that is now being applied in a

number of markets involves providing users with “toolkits for user innovation” that allow users to

customize products for themselves. Apache software employs such a toolkits approach in that it is

“open source” software, designed to be modifiable by appropriately skilled users. Our sample of

respondents contains users that both do and do not modify standard Apache software to create a

better fit to their needs. When we compare responses from innovating and non-innovating users, we

find that users that modify the standard product report significantly higher satisfaction levels than

those that do not. We also find indications that innovations developed by users may benefit non-

innovators as well. In other words, the “toolkits” approach used by Apache does appear to be

effective in helping Apache users to improve the fit between a product and the heterogeneous needs

of individual users. Because the heterogeneity of needs in the Apache case is high but not

remarkably so when compared to other markets (table 1) we infer that there may be many more

markets where it makes sense to consider the toolkit approach.

In section 2 of this paper we provide a review of the literature on heterogeneity of user

needs, on the widespread user practice of modifying standard products to better suit individual

needs, and on the “toolkits for user innovation” approach that can make such modifications easier.

Next, in section 3 we describe our research sample and methods. We then present our findings in

section 4 and conclude with a discussion and suggestions for further research in section 5.

4

2. Review of the literature

2.1: Heterogenei ty o f user need

Available information suggests that user need for any given type of product or service is

often quite heterogeneous. Direct evidence for this can be seen in studies of the characteristics of

marketplace demand for products and services. Indirect evidence is found in studies showing

heterogeneity in other fields and situations that logically imply corresponding heterogeneity in the

types of products and services desired.

Direct studies of marketplace demand are generally carried out under the heading of market

segmentation studies. These involve dividing markets into a relatively few segments, each consisting

of customers with relatively similar needs (Punj and Stewart 1983; Wind 1978). Currently,

segmentation markets is almost always carried out using cluster analysis. Use of cluster analysis for

market segmentation was pioneered in the early 1970’s by Green and others (Green 1971, Green and

Schaffer 1998), and quickly became very popular: over 400 articles on clustering techniques and their

applications to market segmentation were published by 1990 (Dickson 1990).

Probably the most commonly used clustering technique is hierarchical clustering. Here cases

are grouped together stepwise, beginning from the two most similar (or even identical cases) until the

last fusion step in which the most different cases (or clusters) are merged. Determining an

appropriate number of clusters within a sample is done in different ways. The most common is to

examine the increase of squared error sums of each step, and generally view the optimal number of

clusters as having been reached when the plot shows a sudden “elbow” (Myers 1996).

Since this technique does not incorporate information on remaining within-cluster

heterogeneity, it can lead to solutions with a large amount of within-cluster variance. The so called

“cubic clustering criterion” (CCC) partially addresses this concern by measuring the within-cluster

homogeneity relative to the between cluster heterogeneity. It suggests choosing the number of

clusters where this value peaks (Milligan and Cooper 1985). However, this method appears to be

rarely used: Ketchen and Shook (1996) found it used in only 5 of 45 segmentation studies they

examined.

5

Table 1: Proportion of within-cluster variance in a sample of segmentation studies

 Objects to be

clustered

Variables used for

clustering

Number of

clusters

% within cluster

variance

Assael and Poltrack (1999) TV programs Viewers of the program 2 39 % b

Dunne and Turley (1997)

Seniors

Demographics and

perception of senior

banking schemes 3 45 % c

Cheng and Black (1998) Apartment markets Characteristics of markets 5 14 %b

Jimenez-Martinez and

Polo-Redondo (2001)

Firms

Opinions and behavior in

the adoption of EDI 3 80 % e

Leong, Huang, and

Stanners (1998)

Different media

Managers’ perception of

media 2 65 % b

Portnov and Pearlmutter

(1999) Urban areas

Indicators for urban

development 7 50 % b

Schaub and Tokar (1999)

Individuals

Expectations about

counseling 5 56 % a

Thombs and Osborn

(2001)

Counselors

Views of addiction and

valued treatment practices 3 93 % d

Woodman, Clark and

Rimmington (1996)

Hospital kitchens

Characteristics of hospital

kitchens 3 40 % b

Total Mean = 3.7 Mean = 54 %

a calculated by error index supplied in paper, b approximated by dendrogram supplied in paper, c approximated

by scree plot supplied in paper, d information provided by author upon request

6

A small survey we conducted (with the one exeption described below we could find no prior

published data on the matter) indicated that current practice in market segmentation studies results in

an average of 3.7 market segments specified and 54% of total variance left as within-segment

variation after the completion of cluster analysis (table 1).1 A broader survey of top-tier journals by

Franke and Reisinger (2003) produced similar findings. 2 Based upon a sample of 15 studies they

found the average number of clusters in a market segmentation study to be 5.5, and the average

remaining within-cluster variance to be 46%.

These findings suggest that a considerable fraction of heterogeneous customer need may

indeed currently be going unserved by standard commercial products on offer in the marketplace.

(Indeed, the findings represent a lower bound for within-cluster variance because the number of

variables assessed in each study are very unlikely to be the complete set of those having any impact

on the question at issue. Adding richness and fuller verisimilitude to a study by adding more

variables can only result in an increase in within-segment variance for the clusters identified.)

2.2: How are heterogeneous user needs current ly served?

How are non-average user needs currently served? Some are probably not served at all, with

users simply remaining dissatisfied. In other cases, users may find a custom supplier to create

precisely what they want to order. In still other cases, users – firms or individuals - may “serve

themselves” by designing their own products from scratch or by modifying commercially-available

products to better serve their needs.

A few empirical studies have examined the frequency with which users innovate. All find

that quite a large fraction of both industrial and consumer users reporting that they have taken the

option of “making their own” (table 2). Thus, Urban and von Hippel studied firms that were using

“PC-CAD” software to design printed circuit boards and found that 24% reported that they had

built their own PC-CAD systems. Morrison et al (2000), studied Australian libraries that had

installed computerized library information systems. Twenty six percent of these libraries reported

having modified their systems one or more times after initial installation in novel ways not intended

by the system manufacturers. (This despite the fact that suppliers of library information systems

both customize the systems upon initial installation and incorporate many user-adjustable parameters

into the systems they sell.) In the field of consumer sports equipment Luthje (2000) found that 9.8%

of a representative sample of German outdoor athletes (hiking, mountaineering) had significantly

modified their equipment or invented and constructed new products for their own use to serve their

7

personal sporting needs in a better way. Franke and Shah (2001) studied four samples of athletes

who were quite serious about their sporting activities (members of clubs of expert sailplaners,

snowboarders, canyoning athletes, and handicapped cyclists) and found that 32% of their

respondents reported having either modified their equipment or having designed and built entirely

new products for their personal sporting use.

Table 2: Study findings on the frequency of product modification by users

Innovation Area Sample of Users %

Innovating

for Own Use

Did the innovating users

have “lead user”

characteristics?

Printed Circuit CAD

Software(a)

136 PC-CAD association members 24.3% Yes

Library Information

Systems (b)

102 Australian Libraries 26% Yes

Pipe Hanger Hardware (c) 74 Pipe hanger installation firms 36% NA

Outdoor Consumer

Products (d)

153 Purchasers from outdoor product mail-

order catalogs

9.8% Yes

Outdoor Sporting Products

(e)

197 Members of specialized outdoor

sporting clubs

32.1% Yes

Data sources: (a) Urban and von Hippel (1988); (b) Morrison, Roberts and von Hippel (2000); (c) Herstatt and von

Hippel (1992); (d) Luthje (2000); (e) Franke and Shah (2001).

2.3: “Toolkits for innovat ion” to bet ter serve heterogeneous needs

If present commercial products do not serve heterogenous user needs particularly well, how

can manufacturers improve matters? One approach would be to decrease within-segment variation

in user need by increasing the number of segments studied and served with responsive products –

even down to the level of “markets of one.” A second approach builds upon and supports the

previously-noted tendency of many under-served users to “do it themselves” to obtain better

solutions. This second approach involves manufacturers actually abandoning efforts to understand

the heterogeneous needs of their users in detail. Instead, they equip all users or any interested users

with “toolkits for innovation” to assist them in designing their own new custom products. For

8

reasons to be described next, we think that this second approach is likely to be the more promising

one, and it is the one explored empirically in this paper.

Why should one be able to serve heterogeneous user need more effectively by transferring

product design work from manufacturer to user? After all, the same work is being done in both

cases. The advantage lies in lowering the cost of access to “sticky” information required to develop a

product. The stickiness of a given unit of information is defined as the incremental expenditure

required to transfer that unit from one place to another in a form usable by a given information

seeker. When this cost is low, information stickiness is low; when it is high, stickiness is high. The

definition of “sticky” information is broader than and incorporates “tacit” information (Polanyi

1958) as one of several possible causes of stickiness. Thus, information stickiness may be due to

characteristics of the information itself (e.g., tacitness) and/or it may be due to the characteristics of

information seekers or providers.1 (von Hippel 1994).

To understand this matter, consider first that innovation involves applying problem-solving

to information. The information that problem-solvers must draw upon in the case of product

development generally resides at both manufacturer and user locations. Thus, manufacturers tend to

know more than users about solution possibilities and how a product can be most effectively

manufactured; users tend to know more than manufacturers about their particular needs and their

particular use environments. Traditional product design processes involve collecting information

about needs from users and transferring it to manufacturer-based problem-solvers. When the

information collected from users is sticky, this can be a very costly exercise.

Next, note that the stickiness of a given body of information is not immutable: with

investment, firms or individuals can "unstick" or reduce the stickiness of some needed information.

For example, firms may reduce the stickiness of a critical form of technical expertise by investing in

converting some of that expertise from tacit knowledge to the more explicit and easily transferable

form of a software "expert system" (Davis 1986). Or they may invest in reducing the stickiness of

information of interest to users by converting it into a remotely accessible and user-friendly

1 Researchers have both argued and shown that information required by problem-solvers can be costly to transfer
(“sticky”) for a range of reasons. Thus, information stickiness may be due to attributes of the information itself such
as the way it is encoded (Polanyi 1958, Nelson 1982 & 1990, Pavitt 1987, Rosenberg 1982). And/or it may be due to
attributes of information seekers or providers. For example, a particular information seeker may be less able in
acquiring information because of a lack of certain tools or complementary information - a lack of "absorbtive
capacity" in the terminology of Cohen and Levinthal (1990). Also, specialized personnel such as "technological
gatekeepers" (Katz and Allen 1982), and specialized organizational structures such as transfer groups (Katz and
Allen 1988, Suzlanski 1996) can significantly affect the information transfer costs between and within organizations.

9

computer data base. This is what the travel industry did, for example, when it invested substantial

sums to put its various data bases for airline schedules, hotel reservations and car rentals "on-line" in

a user-accessible form.

Finally, consider that incentives to unstick information can vary. For example, suppose that

to solve a particular problem two units of equally sticky information are required - one from a user

and one from a manufacturer. In that case, there will be an equal incentive operating to unstick either

of these units of information in order to reduce the cost of transfer, other things (such as the cost of

unsticking) being equal. But now suppose that there is reason to expect that one of the units of

information, say the manufacturer's, will be a candidate for transfer n times in the future, while the

user's unit of information will be of interest to problem solvers only once. For example, suppose that

a manufacturer expects to have the same solution-related information called on repeatedly to solve n

user product design problems while, in contrast, solving each problem involves unique need

information from a user. In that case the total incentive to unstick the manufacturer's information

across the entire series of user problems is n times higher than the incentive for an individual user to

unstick its problem-related information (von Hippel 1998).

The particular pattern just described often holds in real-world problem solving, because

manufacturers tend to specialize in particular types of solutions – for example, software or plastics or

integrated circuits – that they want to apply to as wide a range of user needs as possible. An

important consequence of this incentive structure is that there will be an incentive to shift

problem-solving activity to the locus of the less frequently called-upon sticky information - in the case of our

example, to the user. When this is so, it is reasonable (but not proven) that approaches to satisfying

heterogeneous user needs that involve user-based problem-solving will be more cost-effective than

approaches involving manufacturer-based problem solving - such as attempting to serve many

market segments via manufacturer-developed products.

Solution-related information that is unstuck and shifted to users is most effectively supplied

in the form of “toolkits for user innovation” (von Hippel and Katz 2002). Toolkits for user

innovation in the software field include four important capabilities. First, and most important, they

incorporate enable users to carry out complete cycles of experimentation and learning during the

process of designing their custom product or service. This capability is essential because problem-

solving in general, and problem-solving in product design in particular, is fundamentally based upon

trial-and-error learning (Baron 1988). Second, toolkits must be “user friendly.” This means that users

should be able to operate them using their existing skills and customary design languages. Third, they

10

must contain libraries of designs for useful components and modules for custom products that have

been tested and debugged. These allow users to adopt what they can, and focus their design efforts

on the truly novel elements of the custom design being developed. Fourth and finally, toolkits must

contain information about the capabilities and limitations of the production process that will be used

to manufacture the product. This ensures that a user’s design will in fact be producible.

3. Research Samples and Methods

Our empirical study of the heterogeneity of user needs, user innovation and user satisfaction

is focused upon the security needs of users of Apache web server software. Web server software is

used on computer servers connected to the Internet. A server’s function is to “service” requests

from Internet browsers for particular documents or content. Initial versions of web server software

were developed in the early to mid 1990’s and offered relatively simple functionality. Over time,

however, Apache and other web server software programs have evolved into the complicated front

end for many of the technically demanding applications that now run on the Internet. For example,

web server software is now used to handle security and authentication of users, provide e-commerce

shopping carts and gateways to databases. Apache software now consists of hundreds of specialized

programs and program modules that collectively address the range of functions that make up a

modern web server.

Apache, the software product that is the subject of the empirical study in this paper, offers

the functional equivalent of a toolkit for user innovation that appropriately skilled users can employ

to create customized and improved versions of the software. Apache offers this opportunity to users

because it is “open source” software that is explicitly designed to enable modification by users.

When software is “free” or “open source,” users are allowed to download the software from the

Internet and use it without charge. Users are also explicitly granted the legal right to study the

software’s source code, to modify the software, and to distribute modified or unmodified versions to

others.3 Tools for software design and test ranging from software languages such as C to compilers

and debuggers are also available in open source form on the web. Taken together with the possibility

of testing newly-written server functionality on one’s own website, and the ability to “produce” and

distribute user-developed code on the Internet, these elements comprise a complete toolkit for user

innovation for Apache users.

11

In the case of Apache, the offered freedom to modify the standard software has been and is

exercised by many users and also by programmers working for companies such as Apple, Covalent,

Redhat, IBM and C2Net, that ‘package’ and sell Apache software for particular applications. The

ability of users to modify standard Apache offerings for themselves is a valuable element in our

study.

Apache, along with other open source software, is not designed in response to information

about general market or user needs. Instead, it consists of a collage of contributions from individual

users, each motivated by an individual need that may or may not represent a need that is widespread

among users. Users that do have sufficient incentive to innovate may freely modify their own copy

of Apache. If they think that others might benefit from what they have done, they may then submit

their code to a central group of volunteers – the 22 members of the Apache Software Foundation.

These volunteers have the right to change to standard, “authorized” version of the code that is

distributed to all interested users free of charge. They review changes that are submitted, and will

tend to accept those that conform to the technical and quality standards of Apache. Despite

(because of?) this lack of explicit or planful attention to general market need, Apache software has

been very well received by users. Apache 1.0 was released on December 1, 1995. In the space of

five years and in the face of strong competition from commercial competitors like Microsoft and

Netscape, Apache has become the most popular web server software on the Internet. In 2000, it was

used by more than 60% of the 8 million World Wide Web sites extant. It has also received many

industry awards for excellence.

We have elected to focus our study only on the security-related needs of Apache users for

two very practical reasons. First, adopting this focus we reduce our study space from hundreds of

software functions to the more tractable number of 45 such functions. Second, the individuals or

groups with direct needs for the security-related features of Apache are the “webmasters”

responsible for the secure and reliable operation of corporate and organizational websites.

Webmasters are clearly identifiable within organizations and are relatively easy for us to access via the

Internet.

3.1 Samples o f Apache webmasters and data co l l e c t ion methods

For our empirical study we elected to draw from two samples of Apache users (webmasters):

(1) a sample of Apache users who posted a question or an answer on a question at the Apache

Usenet Forum (http:// www.deja.com/ group/comp.infosystems.www.servers. unix), and (2) a

12

sample of Apache users who subscribed a specialized online Apache newsgroup (apache-

modules.org). Our reason for selecting this stratified sampling approach was that we wanted to have

an adequate representation of users that both did and did not have the technical skills needed to

modify Apache security software to better fit their needs. Subscribers to apache-modules.org tend to

have a higher level of technical skills on average than those posting to the Apache Usenet Forum,

because the former is directed primarily to the interests of highly-skilled users.

Sample 1: Apache Usenet Posters

A total of 1371 postings were made to the Apache Usenet Forum between December 2000

and April 2001 by a total of 563 different individuals. Analysis showed that a relatively few posters

were responsible for most of the postings in our sample, with the most prolific 1% of the users

originating 20% of the postings, and the top 20% originating 61% of the messages (Gini coefficient

= 0.509). (This type of highly-skewed pattern is often seen in studies of open source project

activities and contributions.)

We sent e-mails to all 563 individuals responsible for one or more postings, and asked them

to fill out an electronic questionnaire. To raise the likelihood of a response, our cover letter included

a note from Ben Hyde, Apache Software Foundation member, explaining that the results of the

survey would benefit Apache. We also offered a free MIT T-shirt to all who returned a completed

questionnaire.

We eventually received 75 completed questionnaires, from our sample of 563. Since one

hundred and twenty two of our e-mails were returned by the mail server as undeliverable, our

response rate was 17% for messages actually delivered to a functioning email address. The response

rate for messages actually delivered into recipients hands is probably significantly higher, as it is likely

that many messages were delivered to email addresses that were no longer being monitored. (Many

relatively sophisticated computer users change email accounts frequently to avoid ads and other

undesirable email collectively known as “spam.”)

The 75 individuals who did respond collectively accounted for 37.1% of the 1371 messages

posted to the Apache Usenet Forum during our sampled period. Thus, frequent posters are

overrepresented in our sample of respondents.

13

Sample 2: Apache-Modules.org Subscribers

The apache-modules.org mailing list consists of approximately 600 users of Apache who

have a general interest in the programming and application of Apache modules. The posting activity

between November 2000 and May 2001 displayed an extremely skewed distribution (Gini coefficient

= 0.914). Only 95 of the 600 subscribers to the list posted a message within this period (16%).

We sent requests to all 600 to fill out electronic questionnaires. These requests contained the

same inducements to respond as were described for sample 1. Forty emails bounced back as non-

deliverable and we received 63 completed questionnaires. Our response rate for messages that

reached the intended address (but that may not have reached the intended addressees for reasons

explained earlier) was thus 11.3%.

Active subscribers are overrepresented in this sample. Among the active sub-population we

have a response rate of 30.5% while the response rate among inactive subscribers is only 7.3%. (The

number of postings i.e. the “degree of activity” does not make a difference: if we weight the answers

with the number of postings we obtain almost the same response rate of 30.6%.)

The webmasters responding to our questionnaire displayed a good distribution across website

type and size. Approximately 76% of the sites were run by for-profit organizations, and 24% by

non-profit groups or individuals. The number of persons managing and maintaining each website

ranged from 1 to 50 with a median of 3. The number of hits per day per site ranged from 1 to 100

million, with a median of 2,000. Respondent webmasters were also quite up-to-date in their use of

Apache. Apache has been progressively improved, and new versions are periodically released

incorporating the latest improvements. All of our respondents reported using the latest major release

(1.3), and the great majority (83.3%) reported using a relatively recent update of that major release

(version 1.3.12 or higher.)

3.2. Deve lopment o f l i s t o f secur i ty funct ions and quest ionnaire

We wanted to present our questionnaire respondents with as complete a list as possible of

potential Apache security needs for their evaluation. Discussions with Apache users and members of

the Apache Software Foundation quickly revealed that, while there were lists of security-related code

modules, there was no list of security-related functions available. We therefore generated our own

such list. We began by generating a preliminary list from published and web-based sources. Next,

we presented this preliminary list to 10 experts in web server security and Apache web server

14

software. These experts were asked to make any corrections or additions they thought appropriate.

The corrected list was then presented to a sample of 11 Apache webmasters who were asked to make

any further corrections needed, including any corrections to language needed to make the questions

clear and unambiguous to the intended webmaster respondents. A internet-based questionnaire was

then developed and pilot tested with 10 webmasters who suggested a few additional changes but in

general commented very favorably upon its content and clarity.

The major part of the questionnaire consisted of a list of potentially-desirable security

functions for Apache that users could evaluate with respect to their own need for them and their

importance. In sum, there were 45 security related functions of a web server included (table 1). Some

of them are incorporated in the Apache standard, some are available in additional modules, and a few

are not yet addressed by any security module generally available to the Apache community. (Security

threats can emerge quickly and become matters of great concern before a successful response is

developed and offered to the general Apache community. A recent example is “site flooding;” a

form of attack in which vandals attempt to cause a website to fail by flooding it with a very large

number of simultaneous requests for a response.) Table 3 lists five general types of security

functions users might feel they need with illustrative examples. A complete listing of the 45

functions included in the questionnaire is provided in the Appendix.

Table 3: Security Related Functions Used in the Questionnaire
Security-related

function

Basic Web

Server Security

Functionality

Authentication

of Client

Identity

E-Commerce

Related

Functions

Within-Site User

Access Control

Other

Illustrative Example

(See Appendix for

complete listing)

“Can act as

HTTP proxy

server”

“Support

NIS/password-

based

authentication”

“Support real-

time credit card

authorization”

“Prohibit by

client

certificate/

digital ID”

“Detect

intrusion

attempts by

examining

client requests”

Number of functions

(total = 45)

8 19 5 7 6

15

3.3 Heterogenei ty o f need measure

A key measure for our study is an overall measure heterogeneity of user needs in a sample.

We define the “heterogeneity of need” in a group as the degree to which the needs of i individuals

can be satisfied with j standard products which optimally meet their needs. This means heterogeneity

of need is high when many standard products are necessary to satisfy the needs of i individuals (j ≈ i)

and low when the needs can be satisfied by a few standard products (j << i).

To measure heterogeneity, we analyze the extent to which j standards, varying from [1; i] meet

the needs of the i individuals. Conceptually, we first locate a product in multidimensional need space

(dimensions = 45 in the case of our present study) that minimizes the distances to each individual’s

needs. (This step is analogous to the Ward’s method in cluster analysis that also minimizes within

cluster variation, see Punj and Stewart 1983). The “error” is then measured as the sum of squared

Euclidean distances. We then repeat these steps and determine the error for two optimally positioned

products, 3 products, etc up to a number equaling i-1, 1 minus the total number of individuals in the

sample (obviously, the error when the number of products is identical to the total number of

individuals is zero.) The sum of squared errors for all cases is then a simple coefficient that measures

how much the needs of i individuals can be satisfied with j standard products, where j = 1, 2, 3…, i-1.

The “coefficient of heterogeneity” just specified is sensitive both to the (average) distance

between the needs and for the configuration of the needs: when the needs tend to form clusters the

heterogeneity coefficient is ceteris paribus lower than if they are evenly spread. To make the

coefficient better comparable for different populations, we calibrate it using a bootstrapping

technique (Efron 1979) involving dividing the coefficient by the expected value (This value is

generated by averaging the heterogeneity of many random distributions of heterogeneity of the same

kind). The average random heterogeneity coefficient is an excellent value for calibration purposes

because it a natural borderline: it assumes that there is no systematic relationship between the needs

of the individuals or between the need dimensions.

• If an empirical coefficient is equal to this average random heterogeneity coefficient there is no

systematic tendency of the individuals to cluster. Each individual’s needs is totally independent

from other individuals’ needs and all combinations of needs regarding the dimensions of need are

equally likely.

16

• If an empirical coefficient is lower than this average random heterogeneity coefficient there is a

systematic tendency of the individuals to cluster. That is, there are groups of individuals with

similar needs.

• If an empirical coefficient is higher than this average random heterogeneity coefficient we would

conclude that there is a tendency for individuals’ needs to disperse, for example because one’s

needs are negatively impacted by another person’s needs. Thus, individuals who purchase

clothing with a goal of emphasizing their individuality might seek selections that they think others

are unlikely to have chosen.

The higher the coefficient the more heterogeneous are the needs of users in a sample. If the

calibrated heterogeneity coefficient equals 1, there is no systematic tendency of the users to cluster.

If it is higher than 1 there is a tendency to disperse. If Hc is lower than 1, there is some tendency of

the individuals to cluster. A coefficient of 0 means that the needs of all individuals are exactly the

same.

4. Research findings

4.1. Heterogenei ty o f user need

We find the security module needs of Apache users in our sample to be quite heterogeneous.

Indeed, the calibrated coefficient of heterogeneity is 0.98, indicating that there is essentially no

tendency of these users to cluster beyond chance.4

An hierarchical cluster analysis (Ward method, Squared Euclidian distance) shows the

following relationship between the number of clusters and the remaining within-cluster variance

(table 4).

Table 4: Relationship Between Number of Clusters and

Remaining Cluster Variance in Apache Sample
of clusters 2 3 4 5 10 15 16 17 50 100 128

Remaining within

cluster variance

88.9% 80.7% 76.9% 73.7% 62.4% 55.5% 54.4% 53.3% 28.0% 6.5% 0%

For example, if we accepted a four-cluster solution (the mean number selected in the studies

reviewed in table 1) we would have 76.9 % remaining within cluster variance. Such a solution would

be very likely to leave many users seriously dissatisfied.

17

Although the measured heterogeneity in our sample is rather high, the coefficients provided

probably understate actual heterogeneity in the sample. Recall that in our questionnaire we used 45

variables that covered 45 security-related functions of web server software. Our expectation was that

this list would cover almost every aspect of need any user in our sample might experience with

respect to Apache website security. But, just in case, we added an open question asking user

respondents to list up to four additional needs they experienced that were not covered by the

standard list. Nearly 50% of the users used the opportunity to add additional functions. Twenty

two percent had one additional suggestion, 16% had two, 4.4% had 3 and 3% had 4 for a total of 108

suggestions. When duplicates were eliminated, we found a total of 92 distinct additional security-

related needs that one or more individual users found relevant.

4.2: Heterogenei ty o f need vs . user ski l l l eve l s

Recall that Apache is a software product consisting of “open source” software. Such

software can be modified by programmers with appropriate skills. In our questionnaire, we asked

each of our respondents to indicate whether they had the skills needed to modify Apache to better

suit their needs. We also asked our respondents about the level of modification they had actually

made to the Apache code used at their website. These two measures can be seen in table 5 and, as

can be seen, they corresponded reasonably well. That is, many of those who claimed the ability to

make modifications had also done so.

18

Table 5: Customization and Programming Skills
 Degree of customization implemented by users

 No customization:

Standard version

only

Security enhanced

standard version of

Apache installed

Integration of additional

security modules

Customized version

installed that involved

coding by user

% of sample

(n = 131)

42.7% 5.3% 32.8% 19.1%

Programming

skills claimed

by users a, b

4.2

(2.2)

4.3

(2.6)

5.3

(1.7)

6.2

(1.3)

a “Some people in the server maintenance group are able to do some modifications of Apache that involve coding”

[1 = strongly disagree; 7 = strongly agree], means (standard deviations)
b ANOVA F = 7.05, p < 0.000 shows that differences of means are strongly significant

Heterogeneity of need in our sample was approximately equal for respondents with and

without the skills needed to customize Apache more to their liking. We determined this by splitting

up the users in our sample into two groups: the highly skilled who stated that they were capable of

modifying Apache by writing new code (n = 62) and the less skilled users who were unsure about

this or claimed not to be able to do such modifications (n = 66).5 In table 6 we see that the degree of

heterogeneity of need is high in both groups, but is slightly higher within the group of highly skilled

users (Hc = 1.05 vs. 0.97). This difference is supported by the fact that the highly skilled users also

tend to suggest more new security related functions beyond the 45 that were incorporated in the

questionnaire (0.94 vs. 0.63 on average).

Table 6: Heterogeneity of Needs of Apache Users of Different Skill levels
Coefficient Highly skilled users

(n = 62)

Not highly skilled users

(n=66)

Empirical heterogeneity coefficient 216,134.41 226,493.71

Average random heterogeneity coefficient (basis: 100 random

preferences, each 45 variables, ranging from 1 to 7)

205,295.22 232,201.41

Calibrated heterogeneity coefficient Hc 1.05 0.97

Average number of suggestions for further improvement

(additional functions)

0.94 0.63

19

Skilled and unskilled users gave generally similar judgments with respect to the subjective

importance of each of the 45 Apache-related security functions included in our questionnaire. Their

assessments on this matter differed significantly with respect to only 4 of 45 functions (re function

#8, p<.05; re functions #4,13 and 18, p< .1). In all of these 4 cases, the skilled users judged the

importance of the function to be higher than did the unskilled users. Although the reasons behind

these similar judgments of subjective importance may differ among our respondents, this finding

raises the intriguing possibility that innovations developed by skilled users might also be of value to

unskilled users.

4.3 Satis fac t ion o f users with Apache secur i ty funct ions

In general, Apache users generally seem to be moderately satisfied with all security related

categories, with the best satisfaction values being seen with respect to basic web server functionality

and within-site user access control. Yet, they are by no means enthusiastic (table 7).

Table 7: Satisfaction of Apache Users with Apache Web Server Security
User satisfaction with the following web server

security functions (Full range of satisfaction index

–21 to + 21: see text)

Highly skilled users

(n = 64)

Not highly skilled

users

(n=67)

Difference

(one-tailed t-test)

Satisfaction with Basic Web Server Functionality 4.5 3.7 p = 0.085

Satisfaction with Authentication of Client 1.5 0.6 p = 0.000

Satisfaction with E-Commerce Related Functions 0.3 0.1 p = 0.267

Satisfaction with Within-Site User Access Control 7.2 6.3 p = 0.197

Satisfaction with Other 1.5 1.4 p = 0.470

Overall Satisfaction 3.0 2.1 p = 0.013

The satisfaction data shown in table 7 were calculated using an adequacy-importance model

where satisfaction is equal to the sum of ratings of different attributes, weighted by the subjective

importance of the attribute.

S = satisfaction of individual i with object j

20

E = rating of object j concerning attribute k (1 to n) by individual i

I = importance of attribute k, rated by individual i

To better compare values for different categories, we divided the resulting value by the

number of functions in the respective category (e.g. authentication of client – 19 functions). A

positive value for the resulting satisfaction means that the individual rated the object positively on

average (better than 4 on the scale from 1 to 7), a negative value corresponds to an unfavorably

evaluation (worse than 4 on the scale from 1 to 7). The theoretical range of the satisfaction index is

[-21; 21].

As can be seen in table 7, the satisfaction levels of those that have the skills needed to modify

Apache is significantly higher than the satisfaction of those who do not have this ability. However,

the patterns of satisfactions and dissatisfactions are quite similar for these two types of user, with the

correlation of the two groups with respect to the satisfaction means of all 45 security functions being

quite high (r = 0.884; p<0.000). (We will develop the implications of this latter finding in our section

5 discussion.)

On the face of it, the higher satisfaction of technically-skilled users seen in table 7 could be

due either to the user modifications made to the standard software or to the ability of more highly

skilled users to operate standard versions of Apache security in a more satisfactory way. (By way of

analogy, consider that an expert pilot might find a given aircraft much more satisfactory than would a

novice pilot – simply because the expert can operate it more skillfully and effectively.) To test this

possibility, in table 8 we examine only the technically skilled users in our sample who claim the

capability of making modifications to Apache software. For these technically-skilled users, we find

significantly higher satisfaction levels among those that actually did customize their software.

21

Table 8: Skilled Users Customizing Their Software

Were More Satisfied Than Those That Did Not Customize
User satisfaction with the following web server

security functions (Full range of satisfaction index

–21 to + 21: see text)

Users that

customized

(n = 18)

Users that did not

customize

(n = 44)

Difference

(one-tailed t-test)

Satisfaction with Basic Web Server Functionality 5.5 4.3 0.100

Satisfaction with Authentication of Client 3.0 1.0 0.001

Satisfaction with E-Commerce Related Functions 1.3 0.0 0.023

Satisfaction with Within-Site User Access Control 8.5 6.9 0.170

Satisfaction with Other 3.9 3.9 0.699

Overall Satisfaction 4.3 2.6 0.010

One might wonder why those with the ability to modify Apache closer to their liking are not

totally satisfied. The answer can be found in respondents’ judgments regarding how much effort it

would require to modify Apache more to their liking. We asked all respondents who indicated

dissatisfaction of a level 4 or lower with a specific function of Apache how much working time it

would cost them to improve the function to the point where they would judge it to be very

satisfactory (to be at a satisfaction level of 7). For the whole sample and all dissatisfactions, we

obtained a working time of 8,938 person days necessary to get a very satisfactory solution (≈ 34

person years). This equals $78 of incremental benefit per incremental programmer working day ($

716,758 divided by 8,938 days). This is clearly below the regular wages a skilled programmer gets.

We conclude from this that skilled users do not improve their respective Apache versions to the

point where they are perfectly satisfied because the costs of doing so would exceed the benefits.

4.4. Wil l ingness to pay for so f tware improvements

Estimating user willingness to pay (WTP) is known to be a difficult task. Prior research

offers several measurement concepts for willingness to pay, ranging from actual transaction data to

simulated auctions and survey data (Wertenbroich and Skiera 2001). In our study, the product in

question (improved Apache software security functionality) did not exist yet, and so we were limited

to survey data approaches to WTP. Popular methods here are conjoint experiments where

respondents value objects that consist of several attributes containing price. However, due to the

very high number of variables we used we could not employ this or similar methods (Gabor and

22

Granger 1966). As a consequence, we elected to employ the contingent valuation method (CVM) in

which the respondents are directly asked how much they are willing to pay for a product or service

(Mitchell and Carson 1989).

Results obtained by the contingent valuation method are found to often significantly

overestimate actual WTP (Lindsay and Knaap 1999). Our own survey of the empirical literature

supports this finding. The empirical studies we found that compare expressed WTP with actual cash

payments on average showed actual spending behavior to be only 15-20% of expressed WTP.6

Our overall approach was to ask each user that had indicated he or she was not really

satisfied with a function (i.e. if his satisfaction with the respective function was 4 or less on a 7-point

scale - 1 = not satisfied at all; 7 = very satisfied) to estimate how much he or she would be willing to

pay to get a very satisfactory solution regarding this function. We offered respondents payment

scales rather than open-ended approaches since research into WTP has shown that this method

provides more valid results (Donaldson, Thomas, and Torgerson 1997). To compensate for the

likely overstatement of expressed relative to actual WTP in our study, we deflated respondents’

indicated willingness to pay by 80%.

An additional deflator of an unknown amount was added by three other elements of our

analysis. First, if a user checked the category “I don’t know” (which was the seventh possible answer

on this question) we counted his answer as $0. Second, we only asked about willingness to pay

relative to the 45 functions described in the main body of the questionnaire. Willingness to pay for

items added by users on the open-ended question were not included. Third and finally, we did not

take into account that also users who are rather satisfied with a function (5 or 6 on our 7-point scale)

would probably also be willing to pay some money to get an even better solution.

After deflation, our sample of 137 respondents were found willing to pay $700,000 in

aggregate to improve Apache web server security functions to a point that fully satisfied each of their

needs (table 11). This amounts to an average of $5,232 total willingness to pay per respondent. If

we extrapolate from our sample of 137 respondents by assuming that each controls 10 of the 315,000

physical servers mounting Apache software (Netcraft as reported in Wired magazine, October, 2001)

we end up with $164,802,000 of willingness to pay in aggregate. (Note that this calculation represents

an upper bound. Although individualized products principally allow for differentiated prices, in reality

a manufacturer would not know the maximum WTP of each individual user – thus our assumption

of a full attainment of the consumers’ benefits by the manufacturer is a simplification).

23

The Apache Software Foundation does not charge for its software, but the cost of

functionally similar Sun webserver software is about $1,100 per machine (Source: Sun website,

November, 2001). If we assume that users would pay about the same amount per machine for

Apache software if it too were a commercial product, we see that the total additional amount that

Apache users would be willing to pay to be perfectly satisfied with the security features of their

Apache software is about 50% of the total “equivalent commercial price” of Apache software

installed by users to date.

Table 9: User Willingness to Pay for Software Improvements

 Money each dissatisfied user

is willing to pay to get a very

satisfactory solution (per

function)

Number of users

who are not

satisfied with at

least one function

(n = 137) Mean SD

Money all users in the

sample are willing to

pay to get a very

satisfactory solution

Basic Web Server Security

Functionality

39.6 % $ 1,774 $ 5,034 $ 107,353

Authentication of Client 35.8 % $ 3,895 $ 15,561 $ 189,967

E-Commerce Related Functions 20.9 % $ 2,141 $ 4,954 $ 60,717

Within-Site User Access Control 29.9 % $ 499 $ 1,858 $ 18,731

Other 49.3 % $ 5,075 $ 21,599 $ 339,989

Total $ 716,758

As we would expect, the level of user satisfaction with specific functions (table 8) appears

related to the amount users are willing to pay for improvements (table 9). Thus “within site user

access control” received the best values for satisfaction, and here users would pay the smallest sum

to get an improved solution. Bringing only 2 of the 45 functions analyzed to what each user sees as

perfection for that function would account for about 50% of the total amount that users are willing

to pay for software improvements. Altogether, the top 19 of 45 functions account for 96.25% of

that amount.7 Note, however, that “perfection is in the eye of each beholder,” and that achieving

perfection for all dissatisfied users could require making different improvements for each.

24

5. Discussion

Within-segment variation in user needs and associated unserved willingness to pay represents

what we may somewhat dramatically call the "dark matter" of market need. It is often significant in

amount, but it is not now directly observed or served in conventional marketing practice. Instead,

analysts typically explore average user needs in a few market segments and develop products and

services suited to the average user in each segments.

As was noted earlier, this traditional practice makes perfect sense for a world in which it is

costly to design, produce and/or advertise products for each market segment selected. After all, if

one can only afford to provide and advertise a standard product for a few market segments, there is

little practical value in creating finer segmentations or learning more about within-segment variation

in user needs. However, the world is now changing, and it is becoming steadily cheaper to design

and produce for “markets of one.” In this new world, we think it makes sense to first analyze the

heterogeneity of user need in a marketplace. Then, if heterogeneity is high, one may elect to increase

user satisfaction via a toolkit approach that helps users to design their own custom product solutions.

In contrast, if heterogeneity is low, one might prefer to follow the traditional approach and offer

standard products adjusted to the needs of a few market segments.

In this paper we studied user needs for and satisfaction with Apache server software security

functionality. Here, we found high heterogeneity of user need accompanied by significant user

willingness to pay for products better suited to individual needs. We also saw that users with the

technical skills to do so did sometimes modify Apache, and that users improving their own

implementation of Apache via a “toolkits for user innovation” approach showed higher satisfaction

than did users unable to modify Apache.

It is important to note that modifying and creating new products via toolkits for user

innovation is not a costless activity, and that users will employ the approach only to the extent that

their benefits exceed their costs. Costs to users consist of the one-time cost associated with

obtaining and learning to use the toolkit plus the variable cost associated with actually designing and

implementing a given modification or innovation. With respect to one-time costs, in the case of our

Apache study less than half of all users in our two samples had made the one-time investment in

coding skills that would allow them to modify Apache code. (Specifically, only 37% of our sample of

Apache Usenet posters – probably reasonably typical of average Apache users in terms of technical

capabilities - reported that they were able to modify Apache in ways that involved actually writing

new computer code. Sixty four percent indicated that they were able to download and integrate a

module that had been developed by others into their copy of Apache.) In the case of variable costs,

25

we saw in section 4.3 that users with the skills needed to modify Apache had not modified it to a

level of perfect satisfaction, but only to a level where (we assume) their incremental innovation costs

equaled their incremental innovation benefits.

The impact of these cost considerations on the toolkits for innovation approach to satisfying

heterogeneous user need is that the fraction of a user population directly benefiting from the approach

will increase as one-time and variable costs go down. However, to the extent that users with lower

skills and incentives share the needs of more highly skilled and motivated users, and to the extent

that the more highly skilled openly reveal the solutions they have developed, even a costly toolkit for

innovation can indirectly benefit the former group. This is because it typically takes less skill and

effort for a user to adopt a solution developed by a skilled user than it does to develop that solution

de novo. This point is nicely illustrated in our Apache study. As was noted above, only 37% of our

sample of representative users felt that they had the skills needed to write new code, but 64% felt

that they had the skills needed to download and use new code developed by others.

For this reason, manufacturers may find it valuable implement toolkits for innovation even if

the proportion of the target market that can directly use them is relatively small. As studies of the

sources of important innovations have shown, many innovations are developed by “lead users” for

their own non-standard needs (von Hippel 1988). Later, these lead user innovations become

attractive to the general population of user/customers, and are profitably diffused by manufacturers

(or, in the case of open source projects, by the users themselves). This is likely to be the case in the

specific instance of the Apache open source innovations studied here. Research on the

characteristics of users modifying Apache shows them to be lead users (Franke 2002).

In the case of our study, it does seem that innovations by skilled Apache users might well be

of benefit to less-skilled users. First, recall that we found (table 8) that the skilled and the less skilled

users in our sample have quite similar preferences, with a significant difference in the importance

ratings present in only 4 of 45 functions. Recall also that, while the mean satisfaction levels differed

between these two groups, the pattern of satisfaction levels is very similar. (The correlation of the two

groups satisfaction means for all 45 security functions is r = 0.884; p<0.000). In other words,

although both groups show different satisfaction levels (because the skilled are able to help

themselves) the satisfaction patterns were similar – which in turn means that the less skilled may well

be profit from modifications made by skilled users in the Apache case.

How generalizable is the toolkits for user innovation approach to addressing heterogeneous

user needs? After all, Apache is clearly not an ordinary product nor is it developed by a

conventionally-organized innovation process. Apache is open source software that is developed,

26

produced, distributed and supported by a community of users rather than by a manufacturer. The

elements of the toolkit needed to both design and modify open source software are available free to

that user community, and the “official” version of the software is put out by a community of user

volunteers working as the Apache Development Foundation.

Despite the unconventional nature of the product we studied here, we think that the

approach is widely applicable. The toolkits for user innovation approach that helps users to innovate

to address their own idiosyncratic needs is equally applicable to physical products developed by

manufacturers. For example, it has been successfully applied in the field of custom semiconductor

design for many years. Custom semiconductors are a physical product that are produced by a

relatively few manufacturers in costly fabrication facilities called silicon foundries. In this field

toolkits for user innovation are produced by third parties, and are used by custom semiconductor

customers to “design their own” custom designs that are later produced for them in silicon

foundries. Although no direct information exists on user satisfaction with this arrangement, billions

of dollars of customer-designed semiconductors are produced each year, and available evidence

suggests that designs done by the users themselves cost less and are developed in less time than can

be done by the manufacturers (von Hippel 1998, Thomke and von Hippel 2002).

Of course, the importance of addressing heterogeneous user need is independent of the

specific approach taken. Future research might identify and explore strategies in addition to toolkits

that may also serve this goal. We hope that others will be interested in exploring this fascinating

subject.

27

References

Aldenfer, M.S. and Blashfield, R.K., 1984, Cluster Analysis (Sage, Newbury Park CA)

Assael, H. and Poltrack, D.F., 1999, Relating Products to TV Program Clusters, Journal of

Advertising Research, 39, 2, pp. 41-52.

Barney, J.B. and Hoskisson, R.E., 1990, Strategic Groups: Untested Assertions and Research

Proposals, Managerial and Decision Economics 11, pp. 187-198.

Baron, Jonathan, 1988, Thinking and Deciding (Cambridge University Press, New York)

Brown, T.C., Champ, P.A., Bishop, R.C., McCollum, D.W., 1996, Which Response Format Reveals

the Truth about Donations to a Public Good, Land Economics, 72, 2, pp. 152-166.

Cheng, P. and Black, R.T., 1998, Geographic Diversification and Economic Fundamentals in

Apartment Markets: A Demand Perspective, Journal of Real Estate Portfolio Management, 4, 2, pp.

93-105.

Cohen, Wesley M., and Daniel A. Levinthal, 1990, Absorptive Capacity: A New Perspective on

Learning and Innovation, Administrative Science Quarterly, 35, no.1 (March), 128-52.

Dickinson, John R., 1990, The Bibliography of Marketing Research Methods, 3d ed. (Lexington

Books, Lexington, MA)

Donaldson, C., Thomas, R., Torgerson, D.J., 1997, Validity of Open-Ended and Payment Scale

Approaches to Eliciting Willingness to Pay, Applied Economics, 29, pp. 79-84.

Dunne, J. and Turley, D., 1997, Banking Schemes for Seniors-Bonus or Unwelcome Badge?, Irish

Marketing Review, 10, 1, pp. 27-35.

Efron, B., 1979, Bootstrap Methods: Another Look at the Jackknife, The Annuals of Statistics, 7, pp.

1-26.

Franke, Nikolaus, 2002, Characteristics of Innovating Users of Apache Open Source Software,

University of Vienna Working Paper.

Franke, Nikolaus and Herbert Reisinger, 2002, Remaining within-cluster variance: a meta-analysis of

the “Dark side” of cluster analysis, Vienna University Working Paper.

Franke, Nikolaus and Sonali Shah, 2001, How Communities Support Innovative Activities: An

Exploration of Assistance and Sharing Among End-Users, MIT Sloan School of Management

Working Paper #4164.

28

Gabor, A. and Granger, C., 1966, Price as an Indicator of Quality, Economics, 33, pp. 43-70.

Green, P.E., 1971, A New Approach to Market Segmentation, Business Horizons, 20, February, pp.

61-73.

Jimenez-Martinez, J. and Polo-Redondo, Y., 2001, Key Variables in the EDI Adoption by Retail

Firms”, Technovation, 21, pp. 385-394.

Katz, Ralph, and Thomas J. Allen, 1982, Investigating the Not Invented Here (NIH) Syndrome: A

Look at the Performance, Tenure, and Communication Patterns of 50 R&D Project Groups, R&D

Management 12, no.1 (January):7-19.

Katz, Ralph, and Thomas J. Allen, 1988, Organizational Issues in the Introduction of New

Technologies, in: Ralph Katz (editor), Managing Professionals in Innovative Organizations

(Ballinger, Cambridge, MA) pp. 442-56.

Ketchen, D.J., Jr. And Shook, C.L., 1996, The Application of Cluster Analysis in Strategic

Management Research: An Analysis and Critique, Strategic Management Journal, 17, 6, pp. 441-459.

Leong, E.K.F., Huang, X. and Stanners, P.-J., 1998, Comparing the Effectiveness of the Web Site

with Traditional Media, Journal of Advertising Research, pp. 38, 5, pp. 44-51.

Lindsey, G. and Knaap, G., 1999, Willingness to Pay for Urban Greenway Projects, Journal of the

American Planning Association, 65, 3, pp. 297-313.

Loomis, J., Brown, T., Lucero, B., Peterson, G., 1996, Improving Validity Experiments of

Contingent Valuation Methods: Results of Efforts to Reduce the Disparity of Hypothetical and

Actual Willingness to Pay, Land Economics, 72, 4, pp. 450-461.

Lüthje, C., 2000, Characteristics of Innovating Users in a Consumer Goods Field, MIT Sloan School

of Management Working Paper No. 4331-02.

Milligan, G.W. and Cooper, M.C., 1985, An Examination of Procedures for Determining the

Number of Clusters in a Data Set, Psychometrica, 45, pp. 159-179.

Mitchell, R.C. and Carson, R.T., 1989, Using Surveys to Value Public Goods: The Contingent

Valuation Method (Resources for the Future, Washington)

Morrison, Pamela D., John H. Roberts and Eric von Hippel, 2000, Determinants of User Innovation

and Innovation Sharing in a Local Market, Management Science, 46, 12 (December), pp1513-1527.

29

Myers, J.H., 1996, Segmentation and Positioning for Strategic Marketing Decisions (American

Marketing Association, Chicago)

Neil, H., Cummings, R., Ganderton, P., Harrison, G., McGuckin, G., 1994, Hypothetical Surveys and

real Economic Commitments, Land Economics, 70, pp. 145-154.

Nelson, Richard R., 1982, The Role of Knowledge in R&D Efficiency, Quarterly Journal of

Economics 97, no.3 (August), 453-70.

Nelson, Richard R., 1990, What is Public and What is Private About Technology?, Consortium on

Competitiveness and Cooperation Working Paper No. 90-9, Center for Research in Management,

University of California at Berkeley, April 1990.

Pavitt, Keith,. 1987, The Objectives of Technology Policy, Science and Public Policy 14, no.4

(August): 182-88.

Pine, Joseph B. II., 1993, Mass Customization: The New Frontier in Business Competition (Harvard

Business School Press, Cambridge, MA)

Polanyi, Michael, 1958, Personal Knowledge: Towards a Post-Critical Philosophy, (University of

Chicago Press, Chicago)

Portnov, B.A. and Pearlmutter, D., 1999, Private Construction as a General Indicator of Urban

Development: The Case of Israel, International Planning Studies, 4, 1, pp. 131-160.

Punj, G., Stewart D.W., 1983, Cluster Analysis in Marketing Research: Review and Suggestions for

Application, Journal of Marketing Research; 20, May, pp. 134-148.

Raymond, Eric, 2000, The Cathedral and the Bazaar, (O’Reilly Press, Sebastopol CA)

Rosenberg, Nathan, 1982, Inside the Black Box: Technology and Economics, (Cambridge University

Press, New York)

Schaffer, Catherine M., Green, Paul E., 1998, Cluster-Based Market Segmentation: Some Further

Comparisons of Alternative Approaches, The Journal of Marketing Research Society, 40 (2), pp. 155-

163.

Schaub, M. and Tokar, D.M., 1999, Patterns of Expectations about Counseling: Relations to the

Five-factor Model of Personality, Journal of Counseling and Development, 77, 2, pp. 177-188.

Seip, K., Strand, J., 1992, Willingness to Pay for Environmental Goods in Norway: A Contingent

Valuation Study with Real Payment, Environmental and Resource Economics, 2, pp. 91-106.

30

Szulanski, Gabriel, 1996, Exploring Internal Stickiness: Impediments to the Transfer of Best Practice

Within the Firm, Strategic Management Journal, 17 (Winter Special Issue) 27-43.

Thombs, D.L. and Osborn, C.J., 2001, A Cluster Analytic Study of Clinical Orientations among

Chemical Dependency Counselors, Journal of Counseling and Development, 79, 4, 450-458.

Thomke, Stefan and Eric von Hippel, 2002, Customers As Innovators,” Harvard Business Review,

(April).

von Hippel, Eric, 1998, Economics of Product Development by Users: The Impact of “Sticky” Local

Information, Management Science, vol 44, No. 5 (May) p. 629-644.

von Hippel, Eric, 1988, The Sources of Innovation (Oxford University Press, New York)

Von Hippel, Eric and Ralph Katz, 2002, Shifting Innovation to Users Via Toolkits, Management

Science, Vol 48, No. 7 (July) pp 821-833.

von Hippel, Eric, 2001, Innovation by User Communities: Learning from Open Source Software,

Sloan Management Review (July).

Wertenbroich, K. and Skiera, 2001, Measuring Consumer Willingness to Pay at the Point of

Purchase, Journal of Marketing Research (forthcoming).

Willis K.G. and Powe N.A., 1998, Contingent Valuation and Real Economic Commitments: a

Private Good Experiment, Journal of Environmental Planning and Management, 41, 5, pp. 611-619.

Wind, Y., 1978, Issues and advances in segmentation research, Journal of Marketing Research, 15,

August, pp. 317-37.

Woodman, J.S., Clark, J. and Rimmington, M., 1996, Productivity in Hospital Kitchens, Services

Industries Journal, 16, 3, pp. 368ff.

31

Appendix:

Complete listing of web server security-related functions included in study questionnaire
Basic Web Server Security Functionality: 1. Can change user access control list without restarting
server; 2. Can act as an HTTP proxy server; 3. Hierarchical permissions for directory-based
documents; 4. Web server has built-in virus scanning engine; 5. Disallow requests for files on
particular devices; 6. Has the ability to control client access to remote web server resources based on
the date and time of the client’s request; 7. Supports SSL; 8. Supports the IPsec security standard

Authentication of Client: 1. Supports NIS/password-based authentication, 2. Support LDAP-
based authentication, 3. Supports DCE authentication, 4. Support Kerberos authentication, 5.
Supports Novell Directory Services (NDS) authentication, 6. Supports the TACACS+ authentication
protocol, 7. Can authenticate against SMB servers, such as Windows NT and Samba, 8. Supports
NTLM authentication, 9. Supports SiteMinder authentication and authorization, 10. Integrated
certificate server, 11. Supports TDS authentications, 12. Can authenticate by checking the contents
of a database, 13. File-based cookie authentication, 14. Supports Windows NT domain controller
authentication, 15. Can authenticate using user-provided function/script, 16. Supports the ability to
create an authentication module that runs on a remote machine, 17. Allows multiple NCSA-style
password files, 18. Supports Lotus Notes based authentication, 19. SSL client certificates (digital
ID’s)

E-Commerce related Functions: 1. Supports S-HTTP, 2. Supports SET, 3. Supports real-time
credit card authorizations, 4. Supports electronic check payments, 5. Supports digitally signed
tickets, to allow the passing of authenticated data from site to site

Within-site User Access Control: 1. Prohibit access by domain name, 2. Prohibit access by IP
address, 3. Prohibit access by user and group, 4. Prohibit access by directory and file,
Configurable user groups (not just a single user list), 5. Prohibit by client certificate/digital ID, 6.
Prohibit by combination of the above

Other Functions: 1. Can hide part of a document based on security rules, 2. Can detect intrusion
attempts by examining client requests, 3. Ability to limit number of concurrent connections from
a host, 4. Supports the ability to run the Hypertext Transfer Protocol daemon (httpd) chrooted, 5.
Supports the ability to provide access control based on the “Referer” HTTP environment variable
6. Security for virtual servers

1 Our survey methodology was as follows. First, we identified all peer reviewed articles in ABI/Inform from 1986 to

2001 that used the term “cluster analysis” in the full text. We obtained 722 hits. All were checked to determine whether

actually cluster analyses were performed, whether the subject matter was market segmentation studies or equivalents, and

whether the data needed for table 1 was supplied. In cases where recent studies were appropriate but some needed data

were not supplied, we emailed to the authors with a request for it. Of 22 requests made, 3 responses supplying the

requested data were received.

32

2 Franke and Reisinger’s sample of studies was obtained by searching the following journals and years for all articles

containing empirical market segmentation studies using cluster analysis: Journal of Marketing Research 1964-2001;

International Journal of Research 1984-2001; Journal of Marketing 1960-2001; Journal of Consumer Research 1980-2001;

Marketing Letters 1989-2001; Marketing Science 1990-2001; Strategic Management Journal 1981-2001. Eighty five

articles were found that met the criteria. Of these, only 15 revealed information on the remaining within-cluster variance

(the others did not display the information directly or indirectly).

3 A software author uses his or her own copyright to guarantee these rights to all users by affixing any of a number of

standard licensing notices, such as “Copyleft,” to the code. Well-known examples of free or open source software are

the GNU/Linux computer operating system, Perl programming language, and the Internet e-mail engine SendMail

(Raymond 2000). Many thousands of free and open source software projects exist today and the number is growing

rapidly. A repository of open source projects, Sourceforge.net, lists in excess of 10,000 projects and more than 100,00

registered users.

4 The empirical heterogeneity coefficient equals 817,555.95 (n = 128) and the average random heterogeneity coefficient

(basis: 100 random preferences, each 45 variables, ranging from 1 to 7) equals 835,144.43. Consequently, the calibrated

heterogeneity coefficient equals 0.98.

5 We asked respondents for their level of agreement with the statement “Some people in our server maintenance group

are able to do some modifications on Apache that involve coding”. A 7-point rating scale was used (anchors 1 =

strongly disagree, 7 = strongly agree). Persons responding to this statement with a 5 or lower were placed into the lower

skilled user group.

6 Brown et al (1996) in a study of willingness to pay for removal of a road from a wilderness area found expressed WTP

to be 4 to 6 times larger than actual WTP. Lindsey and Knaap (1999) in a study of WTP for a public urban greenway

found expressed WTP to be 2 to 10 times larger than actual WPT. Loomis et al (1996) found expressed willingness to

pay for art prints to be 2 times larger than actual WTP. Neil et. al. (1994) found expressed WTP for conserving an

original painting in the desert to be 9 times larger than actual WTP. Seip and Strand (1992) found that less than 10% of

those who expressed an interest in paying to join an environmental organization actually joined. Willis and Powe (1998)

found that among visitors to a castle, expressed WTP was in 60% lower than actual WTP.

7 The two functions that account for 50% of the “money left on the table” are 41 (Can detect intrusion attempts by

examining client requests) and 16 (Supports NTLM authentication). These two functions are followed in declining order

with respect to money left on the table by functions # 4, 30, 42, 40, 6, 27, 31, 20, 39, 32, 12, 8, 7, 24, 18, 44, 2, 45, 10, 1,

3, 22, 43, 23, 29, 38, 21, 13, 17, 37, 15, 25, 35, 9, 28, 19, 34, 26, 36, 5, 33, 11, and 14. (See Appendix for a capsule

description of each of these numbered functions.)

33

Glen’s idea to revise and reposition our paper

